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Experimental Studies and Computer Models 
of the Retina for Visual Prostheses

Several common forms of adult-onset 
blindness are characterized by a 
massive loss of photoreceptors but 

a relative sparing of fi bers in the optic 
nerve. In principle, patients suffering 
from such visual impairments could 
benefi t from a prosthetic system capable 
of acquiring images, processing and 
properly encoding the information, and 
electrically (or magnetically) stimulating 
remaining retinal neurons. Preliminary 
studies using a crude prototype of such a 
device have yielded encouraging results1, 
but a number of biomedical, electronic, 
and neuroscience issues must be addressed 
before the potential of this technology can 
be fully realized.

A consortium of DOE laboratories 
is working on the diffi cult technical 
problems that must be solved to achieve a 
satisfactory “artifi cial retina.” Los Alamos 
researchers are developing techniques 
for imaging patterns of activation within 
the retina, based on fast optical signals 
as well as microelectrode arrays (MEAs). 
These methods will be used to characterize 
the effi cacy of electrical stimulation 
of the retina and evaluate alternative 
strategies for stimulation. In order to 
optimize the processing and encoding 
of visual information to drive a retinal 
prosthetic implant, we hope to discover 
and characterize important aspects of 
information processing performed by 
the visual system by coupling dynamic 
functional imaging techniques with 
detailed computational simulations of 
networks. Understanding how the retina 
encodes visual information is critical 
for achieving maximum benefi t from a 
prosthetic device and may suggest new 
image-processing strategies for computer 
vision systems.

Retina Physiology 

Electrophysiological measurements are 
the gold standard for characterization 
of neural function, allowing resolution 
of individual action potentials (spikes) 
from identifi ed neurons. Multielectrode 
techniques increasingly allow studies 
of encoding strategies employed by 
entire populations of cells2, but the 
measurements are limited by coarse 
sampling and crosstalk due to tissue 
conductivity and are disrupted (at least 
transiently) by electrical stimulation. We 
have developed functional optical imaging 
techniques based on measurements of 
intrinsic optical responses of neural 
tissue that are closely coupled to 
electrophysiological activity. However, the 
signals are tiny; a great deal of work has 
gone into enhancing size and quality of the 
responses. 

We have undertaken studies of responses 
to both light and electrical stimulation 
in isolated amphibian retina (frog or 
tiger salamander). Electrophysiological 
recordings have been obtained with single 
microelectrodes and, more routinely, with 
MEAs fabricated on a glass substrate that 
serves as the bottom of the recording 
chamber. These MEAs consist of 60 
metal electrodes in a rectangular array 
covering several square millimeters of 
area. The electrodes are connected via 
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insulated conductors to a multichannel 
amplifi er and data-acquisition system. 
In some arrays, the electrodes are fl at 
pads. In other commercially available 
arrays, the electrodes are 40 mm cones 
rising 70 mm off the array substrate 
[Figure 1(a)]. We have obtained patterns 

Figure 1. Retinal recordings with a MEA. 
(a) Scanning electron micrograph of a three-
dimensional MEA used for single-unit and local fi eld-
potential recordings in an isolated amphibian retina. 
(b) Spatial pattern of electrophysiological response of 
an isolated retina to an illumination spot. The retina 
was placed ganglion cell surface down on a planar 
MEA. Location of an illumination spot produced by a 
light-emitting diode is illustrated.

(a)

(b)
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of electrophysiological responses refl ecting 
the spatial distribution of the stimulating 
light using planar MEAs [Figure 1(b)]. 
With improved experimental technique 
and using the three-dimensional electrode 
array, we have been able to regularly record 
the electroretinogram (the integrated 
electrophysiological response of the entire 
retina) as well as local fi eld potential 
responses with embedded multiunit spike 
activity (Figure 2). Spikes are extracted 
from other signal components using 
digital signal-processing techniques. In the 
local fi eld potentials (and in single-unit 
data), we observed a strong oscillatory 
response (about 30 Hz in frog retina) 
that was often apparent in single-pass 
data. These responses are most strongly 
associated with off responses, i.e., 
responses to a decrement in illumination, 
and are most prominent with wide-fi eld 
stimuli. Responses appear somewhat phase 
locked to the stimulus, i.e., peaks in the 
oscillating response waveform appear at 
about the same point in time relative to the 
onset or offset of the light stimulus. Signal 
averaging produced small reductions in 
the amplitude of the oscillations but did 
not eliminate them. The reductions were 
most prominent in the fi rst few cycles of 
the oscillation, suggesting that the stimulus 
might reset some ongoing oscillatory 
driver. 

In experiments with a photodiode and 
video detectors, we have demonstrated 

that fast intrinsic optical responses can 
be measured in response to physiological 
activation of neural circuits including 
retina (Figure 3), but the signals are 
very small.3 Unlike other experimental 
techniques that employ dyes to indicate 
changes in cellular ion concentration 
or membrane potential, our methods 
do not require delivery of chemical 
to the tissue, so that in principle such 
measurements can be made noninvasively 
in the intact human eye. Unlike intrinsic 
signal imaging based on changes in 
blood fl ow or tissue oxygen, we detect 
changes in tissue light scattering or 
birefringence that are tightly coupled to 
the electrical response dynamics of the 
neurons. With improvements in optical 
confi guration, we have achieved 20-fold 
increases in signal-to-noise ratio, and 
recent work has identifi ed other possible 
improvements. We recently obtained 
the fi rst dynamic images of the spatial 
patterns of physiological activation in the 
retina using these fast intrinsic optical 
responses. However, because of the small 
size of the scattering response, we continue 
to work on improving the image quality. 
To demonstrate the feasibility of using 
optical responses to monitor the effi cacy 
of electrical stimulation, we have recently 
begun a series of experiments to stimulate 
and record from the retina using a three-
dimensional MEA, while simultaneously 
recording the functional scattered light 

response elicited by stimulation. We 
have obtained convincing responses in 
several experiments, with close agreement 
between the duration of the plateau phase 
of the response in the optical signal and 
the corresponding electrophysiological 
responses recorded across a number of 
electrodes in the MEA. Optical measures 
may prove a particularly useful tool for 
clinical assessment of the retina. We have 
recently demonstrated that functional 
responses from retina can be recorded 
with optical coherence tomography4, a 
technique used routinely to assess retinal 
anatomy.

The availability of high-density 
neurophysiological data from this 
project provides new impetus for linking 
computational models of neural networks 
with experimental responses. If we can 
validate computational methods at the 
level of retinal neuronal networks, we 
increase confi dence in the feasibility 
of modeling the dynamics of extended 
networks within the brain accessible by 
noninvasive methods.

Modeling Stimulation by a 
Retinal Prosthesis

An initial objective of computer 
modeling is to capture the biophysics of 

Figure 2. Electrophysiological response of isolated 
retina to light offset and onset. Upper trace: Single-
pass record from one electrode of the MEA. Note the 
oscillatory off response and embedded spikes. Middle 
trace: High-pass fi ltered version of the upper trace 
showing spiking responses to light onset and offset. 
Lower trace: Photodiode record of stimulus

Figure 3. Intrinsic optical response of retina to light 
stimulation. The retina was placed on an MEA for 
electrophysiological recording and illuminated with 
near infrared light in a transmission confi guration. 
Responses are an average of 100 trials. The optical 
response (upper trace) resembles an integral of the 
lower electrophysiological response.

Figure 4. Effects of geometry on electrical 
stimulation. (a) Change in “membrane potential” 
along a 50 mm passive cable in response to a 1 mA 
current. A vertically oriented segment experiences 
a maximum depolarization of nearly 1 mV at the 
proximal tip, while a horizontally oriented segment 
is virtually unaffected by the stimulus. Cable centers 
were 75 mm from the electrode. (b) Geometrical 

model of a neuron 
derived by tracing a 
labeled cell in the retina.

(a) (b)
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electromagnetic stimulation of neural 
tissue. Neural processes are activated by 
“gradients” in the extracellular potential 
and are largely insensitive to the average 
magnitude, or “direct current offset.” 
The effi cacy of stimulation depends on 
the design of the electrode array, the 
properties of the tissue, and the location 
and orientation of neural processes within 
the potential fi eld. We have developed a 
simplifi ed model of the gross anatomy 
of the retina, and associated structures 
including the vitreous, retina, and 
peripheral tissues, as well as the MEA itself. 
Prosthetic stimulation is modeled by fi rst 
calculating the extracellular potentials 
produced by the applied currents and then 
computing how the resulting gradients 
act upon dendritic and axonal processes 
within the retina.

Currents passed through a single isolated 
electrode produce a dipole-like potential 
fi eld that is nearly mirror symmetric. 
The addition of a large insulator 
(corresponding to a prosthetic device 
affi xed to the vitreous surface) forces 
more of the current into the retina, 
enhancing the potential gradient within 
the tissue and thus the effects of prosthetic 
stimulation. Our results illustrate that the 
size of electrodes and the overall design 

of the prosthetic device itself, can have a 
large impact on the spatial distribution 
of applied currents. After computing the 
potential distribution within the tissue, 
we introduce a passive cable segment 
to simulate the interaction between the 
tissue electric fi eld and the dendritic 
structure of the neuron. This allows us 
to evaluate effects of applied currents on 
cellular membrane potential and thus for 
stimulation. Representative results are 
summarized in Figure 4(a).

This sort of study suggests that our ability 
to stimulate a particular retinal neuron 
will depend strongly on the details of the 
complicated microgeometry of the cell, 
as well as the spatial distribution of ionic 
channels within the cell. Our network-
simulation software provides an adequate 
framework to model these functional 
details. We have recently added capabilities 
to import geometrical descriptions of real 
(or virtual) cells [Figure 4(b)], in order 
to assess the consequences of cellular 
geometry on the specifi city of stimulation 
by a given confi guration of stimulating 
electrodes. However, the sensitivity of 
cells to stimulation also depends on 
the interaction of cells within extended 
circuits and networks within the retina.

Computer Model of Retinal 
Coding and Oscillations

The retina consists of several layers of 
specialized neurons at the back of the eye 
that collectively perform the transduction 
and preprocessing of visual signals. The 
output neurons of the retina, ganglion 
cells whose axons make up the optic 
nerve, line the innermost surface of the 
retina (i.e., closest to the incoming light). 
In the absence of stimulation, most 
ganglion cells fi re spikes in a random 
fashion at a background rate much lower 
than their maximum fi ring frequency. 
When stimulated, the fi ring rate increases 
markedly in proportion to the local 
contrast. This modulation of neuronal 
fi ring rate by stimulus properties and 
related observations are the basis for the 
“rate code hypothesis,” which posits that 
information is transmitted by the mean 
number of spikes per unit time irrespective 

of their precise timing. Other evidence, 
however, that the rate code hypothesis is 
incomplete is that as the size of a visual 
feature (e.g., a light or dark spot) increases, 
the total number of spikes is reduced, but 
a distinct oscillation is often observed in 
the fi ring rate. The phase of the oscillation 
drifts randomly over time so that the 
responses evoked by separate spots will 
rapidly become uncorrelated. Remarkably, 
when a single large spot stimulates two 
groups of neurons, their oscillations 
become strongly phase locked, suggesting 
that the relative timing of spikes in the 
optic nerve may convey information about 
the connectedness of visual features. 

To study the consequences of 
interconnections within the retinal 
circuitry and to explore mechanisms of 
processing and encoding, we constructed 
a computer model (Figure 5). The model 
accounts for responses of certain retinal 
neurons to temporally modulated stimuli. 
The temporal modulation transfer 
function (tMTF) measures how strongly 
the output of a system is modulated as a 
function of the frequency of a sinusoidal 
input. The model retina exhibited a 
sharp resonance peak in its tMTFs above 
60 Hz at frequencies corresponding to 
experimentally observed oscillatory 
responses (Figure 6).5,6 The model 
accounts not only for the resonance 
frequency, but also for an associated kink 
in the phase response curve that plots how 
much the phase of the output modulation 
is shifted relative to the sinusoidal input. 
Using our computer model, we were able 
to show that the kink in the phase response 
curve obtained from retinal ganglion cells 
was due to entrainment. By exploiting 
such resonances, we may be able to 
selectively activate certain retinal neurons 
at their favored stimulation frequencies.

To assess stimulus-evoked oscillations 
in the retinal model, we analyzed the 
local fi eld potentials directly and also 
considered correlations computed between 
spike trains from all pairs of ganglion cells 
activated by the stimulus. The results were 
combined into an averaged correlation 
measure. In both the cat retina and retinal 
model7,8, the phases of the oscillations to 

Figure 5. Computational model of retinal circuitry. 
The full model contained fi ve cell types: bipolar 
(BP) cells; small, large, and polyaxonal amacrine 
(PA) cells; and alpha ganglion cells (GC) arranged 
as a 32 × 32 square mosaic. Light stimuli were 
implemented by injecting currents directly into BP 
cells. Only those elements directly responsible for 
synchronous oscillations are depicted. A combination 
of local excitation via gap junctions and long-range 
inhibition via axon-bearing amacrine cells produced 
physiologically realistic oscillations. Explanation of 
symbols: Excitation (triangles), inhibition (circles), 
and gap junctions (resistors). 
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small stimuli drift randomly over time so 
that fi ring activity becomes uncorrelated 
over suffi ciently long delays. This is a 
fundamentally nonlinear phenomenon 
arising from the threshold nature of spike 
generation; the phase of a linear harmonic 
oscillator, on average, always remains 
fi xed relative to the stimulus onset. The 
retinal model was able to account for the 
experimentally observed size dependence 
of retinal oscillations (Figure 7). In both 
experimental data and retinal model 
results, small stimuli evoked little or no 
oscillatory response, whereas large stimuli 
evoked very large oscillations. 

Conclusion

Evolving experimental techniques allow 
us to characterize the mechanism of 
activation of retinal neurons by electrical 
stimulation and to explore the processing 
and encoding of information by retinal 
neural networks. By coupling these neural 
population measures to computational 
models, we can build a useful tool for 
engineering the neural electronic interface, 
exploring advanced techniques for 
stimulation and optimizing the electronic 
systems employed to encode information 
for processing and interpretation by the 
brain.
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Figure 7. Size dependence of retinal oscillations. 
Correlation functions computed between model spike 
trains exhibit a strong increase in oscillatory activity as a 
function of increasing stimulus size, even when the total 
area of illumination remains constant. A similar size-
dependence was apparent in retinal responses measured 
experimentally.

Figure 6. High-frequency resonance in a retinal 
model. (a) Multiunit tMTF recorded from model 
ganglion cells. Inset: Similar features were present 
in the tMTF recorded from a cat alpha ganglion cell 
in response to a diffuse grating.  (b) The response 
phase plotted as a function of temporal modulation 
frequency. Inset: The phase-response curve of the cat 
alpha cell shows qualitatively similar behavior. 

(a)

(b)



Los Alamos National Laboratory

RESEARCH HIGHLIGHT

PHYSICS DIVISION

Ultra-Low-Field Nuclear Magnetic Resonance 
and Magnetic Resonance Imaging

A primary thrust in clinical nuclear 
magnetic resonance (NMR) 
spectroscopy and magnetic 

resonance imaging (MRI) has been 
towards ever-higher magnetic-fi eld 
strengths. For example, clinical images 
increasingly are moving from 1.5 T to 
3–4 T and research instruments for 
humans are operating at 7 T or higher. 
This is largely motivated by the enhanced 
sensitivity at high fi elds due to increased 
polarization and increasing detection 
effi ciency at higher frequencies.

Nevertheless, very low fi eld (VLF, in the 
mT range) and ultra-low-fi eld (ULF, in 
the µT range) NMR and MRI are areas of 
active interest. Cost and size of systems 
could be signifi cantly reduced. VLF and 
ULF systems could be easily portable 
and the sample need not be restricted to 
the interior of a magnet bore (ex situ or 
‘‘inside out’’ imaging). Other interests are 
driven by the complications of using high-
fi eld MRI with samples containing metal 
(i.e., subjects with metal pins or implants), 
which are minimized at low fi elds. 
Furthermore, we recently demonstrated 
that samples contained entirely inside 
metallic shells may also be imaged at ULF.1

Measurement fi elds do not have to be 
highly homogeneous to achieve narrow 
NMR line widths at ULF. Moreover, for 
a fi xed relative homogeneity, the NMR 
line width scales linearly with the strength 
of the measurement fi eld, allowing the 
possibility of very narrow NMR lines with 
high signal-to-noise at ULF.2 Susceptibility 
artifacts caused by coupling between 
the applied magnetic fi eld and different 
sample materials broaden resonance lines 

at high fi elds but are signifi cantly reduced 
at ULF. The absence of such artifacts 
may provide opportunities for novel 
forms of functional imaging at ULF. For 
example, it may be possible to manipulate 
T1 (longitudinal relaxation time of the 
spin polarization) contrast at low fi eld 
strength to provide signifi cant contrast not 
realizable at high fi elds.

SQUIDs and Magnetic Scanning

NMR spectroscopy detects the magnetic 
signature of nuclear spins precessing 
in the measurement magnetic fi eld. 
At low fi eld strength, signals become 
increasingly diffi cult to measure with 
conventional detectors. Superconducting 
quantum interference devices (SQUIDs) 
are magnetic-fl ux-to-voltage converters 
of exquisite sensitivity with a response 
that is independent of frequency. For 
this reason, a number of low-fi eld NMR 
systems have employed SQUID sensors at 
measurement fi elds below 10 mT, using 
both high-Tc (liquid-nitrogen cooled) and 
low-Tc (liquid-helium cooled) SQUIDs. 
Low-Tc SQUIDs provide higher sensitivity 
(due primarily to lower thermal noise) 
and greater reliability and robustness than 
presently available in high-Tc devices.

The frequency-independent response 
of SQUID detectors also enables one to 
simultaneously detect the signature from 
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multiple different nuclei, even though their 
NMR frequencies can differ by factors of 2 
or more.3 We have recently demonstrated 
this in our own system as well.4 Various 
investigators, including ourselves, have 
already demonstrated that ULF MRI is 
possible (see for example, References 
1, 3, and 5). In addition, we recently 
completed the fi rst-ever demonstration 
of the feasibility of magnetic resonance 
(MR) measurements with simultaneous 
recordings of biomagnetic signals from the 
brain (magnetoencephalography, MEG), 
heart (magnetocardiography, MCG) and 
muscle (magnetomyography, MMG), 
using the same detectors.1,4,6,7

SQUID-based biomagnetic measurements 
are noninvasive techniques that measure 
magnetic fi elds outside the body, for 
example at the surface of the head in MEG. 
These fi elds arise as a direct consequence 
of electrical activity (neurons or nerves) 
in the living body. MEG requires the 
use of SQUID sensors to measure the 
extraordinarily low-level magnetic fi elds, 
usually in the range from 10-15 to 10-12 
T, produced by neuronal activity in the 
brain. While other functional imaging 
modalities, such as functional MRI, 
depend on the relatively slow and indirect 
hemodynamic response of the brain, 
MEG (and electroencephalography, 
or EEG) can provide measurement 
of the electromagnetic fi elds arising 
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from the actual neuronal currents with 
submillisecond temporal resolution. 
Acquiring MR and biomagnetic data 
simultaneously will reduce most of the 
sources of error in colocalization of 
bioelectric sources with anatomy. This 
will be particularly valuable for MEG 
and EEG where data typically must be 
superimposed on conventionally acquired 
MRI images, introducing signifi cant error.

Perhaps the most compelling application 
of NMR/MRI at ULF is to acquire 
direct evidence of biomagnetic signals 
with a tomographic imaging modality. 
Specifi cally, it is speculated that the 

phantom constructed from a series of 
gradient-encoded FID spectra acquired 
at various angles by rotating the sample 
within a fi xed measurement fi eld. The 
measurement fi eld was 7.8 µT and the 
gradient was ~ 7 µT/m.

Simultaneous Measurements of 
Biomagnetic Signals and NMR

Figure 4 shows data recorded for our 
measurement of simultaneous MEG and 
NMR. The blue trace is the proton FID 
curve and the red trace is the evoked 
somatosensory response from a region 
of human cortex. The stimulus was 
delivered to the median nerve (thumb) 
at time t = 0.1 s, producing the artifact 
seen at that time, and the expected N20 
response at 20 ms poststimulus and 
subsequent somatosensory components9 
are clearly visible. These measurements, 
combined with the imaging demonstrated 
in Figure 3, demonstrate that it is possible 
to combine the advantages of low-fi eld 
NMR/MRI with high-temporal-resolution 
MEG measurements. The possibility of 
imaging simultaneously with biomagnetic 
recordings could be useful for cardiac 
diagnostic testing and may alleviate some 
of the issues surrounding localization of 
MEG sources relative to anatomy.

The Quest for a Signature or 
Direct Neuronal Measurements 
with ULF MR

One very compelling application of NMR/
MRI at ULF is to acquire direct evidence 
of biomagnetic responses producing 
changes in the proton precession signal, in 
either frequency, phase, T2*, etc. If such a 
signature could be detected, it would allow 
one to tomographically localize the effect 
of those currents using MR techniques, 
thereby eliminating the complications 
of the inverse problem inherent in 
biomagnetic source localization. This 
would open up a whole new imaging 
modality.

To study these effects we looked at 
T2* values for NMR signals that were 
simultaneously acquired in the presence 
of biomagnetic signals such as those 

Figure 1. Schematic diagram of the system used 
to measure simultaneous NMR and biomagnetic 
signals. Current generators provide current to the 
magnetic fi eld coils producing Bp and Bm. Control 
signals allow the computer (PC) to adjust SQUID 
settings and current levels. AUX signals are auxiliary 
signals acquired by the data acquisition (DAQ) such 
as trigger signals, ECG data, etc.

Figure 2. (a) FID for both H2O and C10F18. (b) 
The FFT of the data in (a) showing the peaks from 
fl uorine (~ 872 Hz) and protons (~ 927 Hz). Data 
for both solutions were taken simultaneously.

bioelectric currents that produce the 
signals we measure in MEG, MCG, or 
MMG may produce changes in the proton 
precession signal, in either frequency, 
phase, T2* (total relaxation time of the 
spin polarization), etc. If such a signature 
could be detected, it would allow one to 
tomographically localize the effect of those 
currents using MR techniques, thereby 
eliminating the complications of the 
inverse problem inherent in biomagnetic 
source localization. Our team has recently 
begun investigating this phenomenon.4,7

Measurements of ULF NMR and 
MRI

Figure 1 shows a schematic diagram 
of the ULF NMR system designed in 
Biological and Quantum Physics (P -21). 
This confi guration uses a tangential 
gradiometer and is optimized for 
the measurement of simultaneous 
measurements of MCG and NMR.4

Figure 2 shows the free induction decay 
(FID, the actual signal of spin precession) 
from a sample of H2O and C10F18
taken simultaneously, and a fast Fourier 
transform (FFT) of the signal.4 As noted 
previously, this would not be possible 
with a conventional MR system, as the 
receiver coils would not be able to detect 
two frequencies so far apart. An example 
of the utility of such measurements is to 
food science, where conventional high-
fi eld NMR has already become a powerful 
tool for the detection of moisture content, 
sugar content, adulteration, bacterial 
spoilage, etc.8 Our methods suggest a 
strategy for inspecting food inside metallic 
cans. We measured the hydrogen-1 NMR 
signal from tomato juice and cola inside 
unopened aluminum cans and observed 
very different T2* times: cola ~ 1500 ms, 
tomato juice ~ 300 ms.

We have also been able to acquire simple 
images with our system. Figure 3(a) 
is a photograph of a 60 mm diam by 
52 mm high cylindrical plastic phantom 
with seven 10 mm diam by 48 mm deep 
wells. Four of the wells were fi lled with 
water (shown fi lled with colored water 
for visibility). Figure 3(b) illustrates a 
two-dimensional (2-D) image of the 
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from heart (MCG) and muscle (MMG). 
Our hypothesis was that the value of T2* 
in the presence of bioelectric currents 
would be shorter than that measured 
when such currents were absent, because 
inhomogeneity in the local fi elds should 
produce a dephasing of spin signals.

Figure 5 shows the siumultaneously 
acquired NMR and MCG data. NMR 
signals were recorded at various times 
during the heartbeat, as indicated in 
the fi gure. Data for approximately 100 
heartbeats were averaged after removing 
specifi c noise components (power-line 
harmonics, cryostat demagnetization 
signal, and eddy current signal), and 
fi ltering.

We focused on the values of T2* for NMR 
during the “T” peak (200–250 ms after 
the “R” peak) and for NMR during the 
resting phase of the heartbeat (400–700 
ms after the “R” peak). These values were 
calculated by the direct exponential curve 
resolution algorithm (DECRA)10 and 
the estimated T2* was extracted from the 
damped exponential found at the Larmor 
(precession) frequency.

T2* values varied among subjects with the 
shortest being 76 ms and the longest being 
123 ms. We hypothesize that physiological 
differences among subjects such as fat 
content in the chest wall contribute to 
the spread in values. We observed that 
the values of T2* for the resting phase 
appeared longer than those for the “T” 
peak by 2–9 ms for four of the fi ve subjects 
(as we would expect), however was shorter 
by 5–7 ms for one subject. Our uncertainty 
in T2* for water phantoms with varying 
concentrations of copper sulfate was found 
to be ± 1 ms. However, it is very diffi cult 
to estimate the uncertainty in T2* for 
measurements where the sample geometry 
is so much more complicated and variable.

Because of the complexity of the muscle 
responses in the cardiac system, we chose 
to use MMG to investigate the effect of the 
bioelectric currents on the NMR signal 
T2*. The bioelectric currents during MMG 
are much larger than neuronal currents, 
and unlike MCG, effects such as motion, 

blood fl ow, and blood volume of the 
sample being measured are signifi cantly 
reduced.

The experiments provide data with 
interleaved epochs of NMR recorded 
while the muscles of the forearm were 
either stressed or relaxed. This protocol 
was chosen to try and reduce any 
hemodynamic or metabolic effects. The 
probability density functions (PDFs) 
of T2* were then inferred from the data 
for both stressed and relaxed conditions 
using a “bootstrap” method.4 The results 
are shown in Figure 6. The same analysis 
approach was then applied to random 
permutations of the stressed and relaxed 
sets. The inferred PDF for the randomly 
mixed data is shown in Figure 7.

The permutation test (Figure 7) shows 
no inherent preference in our processing 
between the two sets, while the bootstrap 
tests (Figure 6) suggest that the two 
conditions may be distinct, but with 
statistically low power. Our observed 
difference in T2* for the two conditions 
is not statistically signifi cant; however, it 
is encouraging that the trend of a shorter 
T2* for the stressed condition is what one 
would expect if this effect were due to 
bioelectric currents dephasing the NMR 
signal. We caution that even if this effect 
were statistically signifi cant, we are not 
yet able to rule out that the measured 
effect was due to a systematic error due to 
the slight differences in the experimental 
confi guration between the two cases (i.e., 
slightly different arm position), some 
other systematic error in our hardware, or 
a biological effect that is not electrical in 
nature.

Discussion and Conclusions

We have demonstrated that biomagnetic 
signals can be acquired simultaneously 
with NMR data using SQUID sensors 
at ultralow magnetic fi elds. We have 
demonstrated MRI at these low fi elds for 
water phantoms. These results provide 
the basis of performing MR anatomical 
imaging simultaneously with bioelectric 
source localization. Such capability 
will greatly enhance the effi cacy and 

Figure 3. (a) Photograph of a 60 mm diam 
cylindrical plastic phantom with seven 10 mm 
diam wells. Four of the wells were fi lled with water 
(colored water for visibility). (b) Image of the 
phantom (2-D) constructed from a series of gradient 
encoded FID spectra acquired by rotating the sample 
within a fi xed measurement fi eld. The gradient was 
produced by slightly unbalancing the current in the 
Helmholtz coils. The average over ~ 100 epochs is 
shown.

Figure 4. Simultaneous hydrogen-1 NMR FID (blue 
trace) and MEG somatosensory response (red trace) 
acquired from a region of the human head including 
the somatosensory cortex.
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reduce errors over current functional 
neuroimaging techniques. In addition, we 
have investigated the possibility of using 
MR techniques to tomographically image 
the direct consequence of bioelectric 
activity in living tissue. Although there 
is signifi cant work to be done, we are 
encouraged that the modality of ULF 
NMR with SQUIDs is going to be able 
to see these direct effects and open up 
a whole new way to gain knowledge 
regarding bioelectric function.

If nothing else, we have demonstrated that 
simultaneous anatomical and bioelectric 
images are possible, and that the fi eld 
of ULF NMR/MRI with SQUIDs has an 
exciting future.
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Figure 5. Simultaneously acquired NMR and MCG 
data. NMR was acquired at the various times 
indicated during the MCG.

Figure 7. Probability density of T2* inferred from the 
randomly permuted data set.

Figure 6. Probability density of T2* inferred from 
1000 bootstraps for stressed and relaxed epochs.
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Stochastic Closure for Multiscale Simulations

In nonlinear systems, small-scale 
phenomena affect large-scale 
behavior. Computer simulations 

of large, nonlinear systems, therefore, 
require very large grids in order to both 
cover the domain of the problem and 
to resolve the fi nest relevant small-
scale phenomenon. Existing computing 
capabilities are often inadequate to 
compute on grids that fully resolve the 
small-scale phenomena resulting in the 
use of coarser grids. In such cases, the 
equations governing the dynamics of the 
system to be simulated must be modifi ed 
to try to replicate the effects of the now 
missing, subgrid-scale phenomena. This 
problem of how to modify the equations 
to replicate the subgrid phenomena is 
known as the problem of closure, and 
any particular modifi ed set of partial 
differential equations (PDEs) is called a 
particular choice of closure relation. In 
practice, generating closure relations is a 
very problem-specifi c, time-consuming 
endeavor, often involving the generation 
and fi ne-tuning of models to incorporate 
phenomenological information and/or 
theoretical insights about the particular 
system to be simulated.1,2

Yet another ubiquitous problem 
associated with simulating complex 
systems is uncertainty quantifi cation. 
Input parameters, boundary conditions, 
and physics-model parameters are often 
unknown and affect the outcome of 
the simulation. In order to quantify 
the uncertainty of the output of the 
simulation, given that of the input 
parameters, the simulation must be run 
many times with different values of the 
parameters.3,4 

The problems of closure and of 
uncertainty quantifi cation are correlated 
for a number of reasons. First, closure 
must be accomplished on a suffi ciently 
coarse grid to allow for multiple runs of 
the simulation. Second, the act of up-
scaling a system of equations to a coarse 
grid and choosing a closure relation is a 
source of uncertainty; different closure 
relations can be used, producing different 
results. 

Our Approach to Closure

We are working to develop, validate, and 
apply a new probabilistic approach to 
the problems of closure and uncertainty 
quantifi cation in multiscale simulations 
through stochastic closure (SC). Our SC 
approach uses a probability distribution 
of closure relations as the solution of 
the closure problem. This probability 
distribution represents information about 
the unresolved phenomena that may be 
obtained from the output of a simulation 
on a fi ne grid that resolves the small-scale 
phenomena over a smaller domain, as 
well as from relevant experimental results. 
Statistical methods for density estimation 
can be used to generate a distribution 
that encodes this information. Once 
the probability distribution is obtained, 
individual closure relations are drawn 
at random and used throughout the 

D.M. Schmidt, S.C. Jun (P-21), B. Nadiga, D. Livescu (CCS-2), D. Higdon (D-1), D. Ranken (CCN-12)

evolution of the simulation. Uncertainties 
in the choice of closure relations are 
clearly defi ned and better sampled in 
this approach. Moreover, the effects of 
unresolved phenomena tend to be better 
represented with this SC approach than 
with the use of a single closure relation. 
Finally, by addressing the closure issue 
with generalized probabilistic methods, 
the tools and technologies that we are 
developing will be applicable to a range of 
multiscale systems. 

Rationale

The rationale for SC derives from the 
following considerations. Any coarsely 
sampled or gridded fi eld could have 
resulted from one of a large number of 
different nonsampled, or continuous fi elds. 
The different continuous fi elds generate 
different dynamics in the nonlinear terms 
of the dynamical equations, resulting 
in a large number of different closure 
relations that could be used. Constructing 
a probability distribution of closure 
relations allows one to incorporate 
information about the likelihood of any 
particular closure relation based on prior 
information about the subgrid-scale 
phenomenon for that dynamical system. 
This information is contained within the 
original dynamical equations and may 
be found by simulating the system over a 
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small domain with a fi ne enough grid to 
resolve the small-scale phenomenon.

If successfully utilized, a number of 
potential benefi ts may result from these 
ideas. By treating closure as a probabilistic 
problem where a probability distribution 
is generated based on the output of 
a fi ne-scale simulation, the statistical 
techniques developed to generate such a 
distribution can be applied to a wide range 
of problems and in a nearly automated 
fashion. This diminishes the historical 
problem of generating closure relations as 
being a problem-specifi c, time-consuming 
endeavor. By drawing from a distribution 
of closure relations throughout multiple 
simulations, the uncertainty associated 
with up-scaling to a coarse grid are 
inherently included and in a manner 
that allows for other uncertainties to be 
included as well. This signifi cantly aids the 
uncertainty quantifi cation goal. Moreover, 
because multiple closure relations are 
being used, the time average of multiple 
moments of fi elds is well reconstructed, 
not just one or a few moments. Though 
others have used SC terms5, they have 
been problem specifi c and have not 
been formulated in the generalized 
statistical terms we propose here, nor did 
they address the important problem of 
uncertainty quantifi cation. 

Example

We have used a simple barotropic 
model of the subtropical/subpolar gyre 
(rotating fl ow) circulation in the ocean 
as a prototypical multiscale problem to 
illustrate the SC approach. The time-
averaged stream function from a high-

resolution, 200 × 100 grid simulation 
shows a pair of inner wind-driven, 
counter-rotating gyres and a pair of 
outer gyres (left panel of Figure 1) that 
are driven by turbulent eddy fl uxes.6 In a 
low-resolution 50 × 25 grid simulation, 
using the same dynamical equations and 
identical setting, the time-averaged stream 
function does not contain the outer pair 
of eddy-driven gyres and the magnitude 
of circulation is lower in the inner pair 
of wind-driven gyres (right panel of 
Figure 1). 

To construct a distribution of closure 
relations for the low-resolution simulation, 
we used the results of the high-resolution 
simulation. The dynamical system 
involved a single nonlinear term in the 
PDEs that was a Jacobian of two fi elds, 
J(p, q). To construct the SC distribution, 
we examined the local spatial average 
(to represent the act of down-sampling 
to a coarser grid) of the Jacobian versus 
the Jacobian of the spatially averaged 
fi elds. Specifi cally, we looked at 〈J(p,q)〉 
versus J(〈p,q〉), where 〈 〉 denotes local 
spatial average. A scatter plot of these 
quantities from the output of the fi ne-
scale simulation for a local region in the 

Figure 2. Scatter plot demonstrating the nonlinear Jacobian of the coarsely sampled fi elds (horizontal axis) 
versus the coarsely sampled Jacobian of the fi nely sampled fi elds (vertical axis). We are given the values on the 
horizontal axis during the evolution of the PDEs on a coarse fi eld, but the true values of the Jacobian are on 
the vertical axis. This error is due to the coarse sampling of the fi elds, and a closure relation is the algorithm 
used to calculate the correction. Our SC approach samples closure relations from a probability distribution 
constructed to represent the nondeterministic nature of the closure problem.

Figure 1. Time-averaged stream function plotted over the two-dimensional domain of the sample problem, 
resulting from three different simulations. Left panel is from a high-resolution simulation that fully resolves 
the nonlinear phenomena and represents the “true” results. Right panel resulted from an uncorrected 
simulation of the same PDEs but on a low-resolution coarse grid. Middle panel resulted from the average of 
10 simulations with SC correction on the coarse grid. 
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two-dimensional spatial domain is shown 
in Figure 2. When integrating the PDEs 
on a coarse grid we are given J(〈p,q〉) but 
would like to know 〈J(p,q)〉. Clearly, no 
single choice exists for this but rather a 
range of choices that we approximate by 
constructing a distribution (Figure 2). 

The low-resolution simulation was rerun, 
but modifi ed to include a SC term to 
model the subgrid turbulence that was 
randomly sampled from the previously 
found distribution, assuming a temporally 
homogeneous model for the subgrid 
phenomena temporal correlation. Adding 
this sampling step did not signifi cantly 
add to the run time of the code so that we 
could run multiple stochastic simulations 
in much less time than it took for one run 
of the high-resolution simulation. The 
middle panel of Figure 1 shows the average 
over multiple stochastic simulations 
of the time-averaged stream function. 
The outer pair of gyres now re-emerges 
and the magnitude of circulation in the 
wind-driven pair is 
improved as well. 
We also calculated 
and compared the 
temporal variability 
(standard deviation 
over time) of the 
stream function 
for each type of 
simulation (Figure 3). 
The low-resolution 
run completely failed 
to reproduce the 
temporal variability 
found in the high-
resolution run, but 
the low-resolution 
stochastic run 
did a good job in 
reproducing this 
variability. These 
results indicate that 
multiple moments 
of the fi elds are 
reproduced well 
with this SC 
approach. Moreover, 
the variance or 
uncertainty of any 

Figure 3. Similar to Figure 1, however, the standard deviation of the stream function over time is shown, 
rather than the average over time. This shows that multiple moments of the stream function are reproduced 
well in the SC approach.

Figure 4.  Illustrating how uncertainty is estimated in the SC approach. The left panel is a duplicate of the middle panel of Figure 3, 
showing the standard deviation over time of the stream function (SDSF) and averaged over multiple SC simulations. The panel on the 
right shows the histogram of this quantity over the multiple SC simulations for the region shown in the circle on the left panel fi gure. 
This histogram represents the relative probability of the SDSF values, which quantifi es the uncertainty of this quantity. The true value is 
shown in the fi gure and is consistent with this distribution. 
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